Mutually Unbiased Equiangular Tight Frames
نویسندگان
چکیده
An equiangular tight frame (ETF) yields a type of optimal packing lines in Euclidean space. ETFs seem to be rare, and all known infinite families them arise from some combinatorial design. In this paper, we introduce new method for constructing ETFs. We begin by showing that it is sometimes possible construct multiple the same space are “mutually unbiased” way analogous quantum-information-theoretic concept mutually unbiased bases. then show taking certain tensor products these with other complex
منابع مشابه
Tremain equiangular tight frames
We combine Steiner systems with Hadamard matrices to produce a new class of equiangular tight frames. This in turn leads to new constructions of strongly regular graphs and distance-regular antipodal covers of the complete graph.
متن کاملSteiner equiangular tight frames
We provide a new method for constructing equiangular tight frames (ETFs). The construction is valid in both the real and complex settings, and shows that many of the few previously-known examples of ETFs are but the first representatives of infinite families of such frames. It provides great freedom in terms of the frame’s size and redundancy. This method also explicitly constructs the frame ve...
متن کاملEquiangular Vectors Approach to Mutually Unbiased Bases
Two orthonormal bases in the d-dimensional Hilbert space are said to be unbiased if the square modulus of the inner product of any vector of one basis with any vector of the other equals 1 d . The presence of a modulus in the problem of finding a set of mutually unbiased bases constitutes a source of complications from the numerical point of view. Therefore, we may ask the question: Is it possi...
متن کاملLattices from tight equiangular frames
We consider the set of all linear combinations with integer coefficients of the vectors of a unit tight equiangular (k, n) frame and are interested in the question whether this set is a lattice, that is, a discrete additive subgroup of the k-dimensional Euclidean space. We show that this is not the case if the cosine of the angle of the frame is irrational. We also prove that the set is a latti...
متن کاملEquiangular tight frames from Paley tournaments
We prove the existence of equiangular tight frames having n = 2d − 1 elements drawn from either Cd or Cd−1 whenever n is either 2k − 1 for k ∈ N, or a power of a prime such that n ≡ 3 mod 4. We also find a simple explicit expression for the prime power case by establishing a connection to a 2d-element equiangular tight frame based on quadratic residues. © 2007 Elsevier Inc. All rights reserved....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2021
ISSN: ['0018-9448', '1557-9654']
DOI: https://doi.org/10.1109/tit.2020.3042735